LINEAR ALGEBRA OF KRONECKER DELTA

S. KIRUTHIKA, III- B. SC. MATHEMATICS,

T. P.K.R ARTS COLLEGE FOR WOMEN (Autonomous Institution - Affiliated to Bharathiyar University),

GOBICGHETTIPALAYAM, Erode.

Abstract

We generating dual basis of Kronecker delta. We have to use trigonometry term in Kronecker delta to apply degree of trigonometry formatting the Kronecker delta. The trigonometry degree of 0° and 90° is exactly form the kronecker delta then another degree $30^{\circ}, 45^{\circ}, 60^{\circ}, \ldots$ is approximately value to form the Kronecker delta.

Keywords

Linear function, dual basis, Kronecker delta, trigonometry

Introduction

In mathematics on dual basis of $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be a basis of v over k . Let $\mathrm{u}_{1}, \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{n}} \in \mathrm{v}^{*}$ be the linear function defined by,

1, $=$
$\Psi_{i}\left(\mathrm{~V}_{\mathrm{i}}\right)=0, \quad \neq$
Then $\left\{\Psi_{1}, \Psi_{2}, \ldots . . . \Psi_{n}\right)$ is a basis of v^{*}. The basis $\left\{\Psi_{j}\right\}$ is called dual basis. we also shall that the basis $\left\{\Psi_{j}\right\}$ is dual to
$\left\{\mathrm{v}_{\mathrm{j}}\right\}$
When the mapping Ψ_{j} are well defined and unique the symbol ${ }_{\mathrm{ij}}$ is called Kronecker delta.

Kronecker delta

The Kronecker delta is a function of two variables, usually just non - negative integers. The Kronecker delta appears naturally in many areas of mathematics, physics and engineering.

Trigonometry

Trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles.

Result and Discussion

The Kronecker delta of trigonometry term

Theorem-1

Statement:

Let $\left\{(1,0,(0,1)\}\right.$ be a basis of the vector space and if G_{1} and G_{2} be the dual basis
If we use Kronecker delta of trigonometry term to apply $0^{\circ} 90^{\circ}$ then we have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and
$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$, where $\mathrm{x}, \mathrm{y} \in \mathrm{v}$

Proof:

Consider the general term,

$$
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=\cos \mathrm{x}+\sin \mathrm{y} \quad \rightarrow(1)
$$

$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=\cos \mathrm{X}$ siny $\quad \rightarrow(2)$
We have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
Put $\mathrm{x}, \mathrm{y}=90^{\circ}$
From (1) we have,

$$
\begin{aligned}
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y}) & =\cos \quad+\sin \\
& =\cos \left(90^{\circ}\right)+\sin \left(90^{\circ}\right) \\
& =0+1
\end{aligned}
$$

$\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$
From (2), we have,

$$
\begin{aligned}
\mathrm{G}_{2}(\mathrm{x}, \mathrm{y}) & =\cos \left(90^{\circ}\right) \sin \left(90^{\circ}\right) \\
& =0 \mathrm{X} 1
\end{aligned}
$$

$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
The Kronecker delta of trigonometry term applied 90° hence proved the
$\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$, and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$.
Put $x=0^{\circ}$
From (1), we have

$$
\begin{aligned}
\mathrm{G}_{\mathrm{l}}(\mathrm{x}, \mathrm{y}) & =\cos \left(0^{\circ}\right)+\sin \left(0^{\circ}\right) \\
& =1+0 \\
& =1
\end{aligned}
$$

From (2),

$$
\begin{aligned}
\mathrm{G}_{2}(\mathrm{x}, \mathrm{y}) & =\cos \left(0^{\circ}\right) \sin \left(0^{\circ}\right) \\
& =1 \mathrm{X} 0 \\
& =0
\end{aligned}
$$

The kronecker delta of trigonometry term applied 0° hence proved the $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$.
Theorem-2

Let $\{(1,0),(0,1)\}$ be a basis of the vector space and if G_{1} and G_{2} be the dual basis
If we use Kronecker delta of trigonometry term to apply $30^{\circ} 45^{\circ}$ then we have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$, where $\mathrm{x}, \mathrm{y} \in \mathrm{V}$
Proof:

Consider the general term,

$$
\begin{array}{ll}
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=\cos \mathrm{x}+\sin \mathrm{y} & \rightarrow(1) \\
\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=\cos \mathrm{X} \text { 央 } \mathrm{y} & \rightarrow(2)
\end{array}
$$

We have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
Put $\mathrm{x}, \mathrm{y}=30^{\circ}$
From (1), we have

$$
\begin{aligned}
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y}) & =\cos \left(30^{\circ}\right)+\sin \left(30^{\circ}\right) \\
& =\sqrt{ }^{+}+{ }_{-} \\
& =\underline{V_{-}} \\
& \simeq 0.43 \\
& =0
\end{aligned}
$$

The Kronecker delta of trigonometry term to applied 30° hence proved the $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
Put $=45^{\circ}$
From (1), we have

$$
\begin{aligned}
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})= & \cos +\sin \\
= & \cos \left(45^{\circ}\right)+\sin \left(45^{\circ}\right) \\
= & -\sqrt{ }+\sqrt{ }- \\
= & \boxed{V} \\
= & \sqrt{ } \sqrt{ } \\
= & \sqrt{ } 2 \simeq 1.41
\end{aligned}
$$

$\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$
From(2), we have
$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=\cos \left(45^{\circ}\right) \sin \left(45^{\circ}\right)$

$$
=\sqrt{ } X_{V}
$$

$$
-\quad-
$$

$$
=\simeq 0.5
$$

$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
The Kronecker delta of trigonometry term to applied 45° hence proved the $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
Theorem - 3
Let $\{(1,0),(0,1)\}$ be a basis of the vector space and if G_{1} and G_{2} be the dual basis
If we use Kronecker delta of trigonometry term to apply 60° then we have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$, where $\mathrm{x}, \mathrm{y} \in \mathrm{v}$
Proof:
Consider the general term,

$$
\begin{array}{ll}
\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=\cos \mathrm{x}+\sin \mathrm{y} & \rightarrow(1) \\
\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=\cos \mathrm{x} X \sin \mathrm{y} & \rightarrow(2)
\end{array}
$$

We have to prove $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
Put $x, y=60^{\circ}$
From (1), we have
$\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=\cos \left(60^{\circ}\right)+\sin \left(60^{\circ}\right)$
$={ }^{-}+\overline{\sqrt{2}}$
$=\frac{\vee^{-}}{} \simeq 1.36$
$\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$
From (2), we have
$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=\cos \left(60^{\circ}\right) \sin \left(60^{\circ}\right)$
$=X_{-}^{\sqrt{ }}$
$={ }^{\sqrt{ }} \simeq 0.43$
$\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$
The Kronecker delta of trigonometery term to applied 60° hence proved the $\mathrm{G}_{1}(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{G}_{2}(\mathrm{x}, \mathrm{y})=0$.

Conclusion

We have to generating dual basis of Kronecker delta, using trigonometry term applied trigonometry degree of $0^{\circ} \quad 90^{\circ}$ exactly hence proved the Kronecker delta.

And then another degree of $30^{\circ}, 45^{\circ}, 60^{\circ} \ldots \ldots$ also hence proved the Kronecker delta. but $0^{\circ} 90^{\circ}$ is only exact value of dual basis then another degree is approximate value.

Acknowledgements

My research work can help the professor and family members in this section.

References

[1]. K.P.GUPTA (1988) Linear Algebra
Pragathi prakashan publication Meerut

India limited.
[2]. R. D. Sharma \& Ritu jain
j. k. International publishing house pvt . Itd, 2010.

